Hned v prvních dnech roku 2025 jsme dosáhli v rámci projektu velké modernizace Hvězdárny Valašské Meziříčí dalšího významného cíle. Po více než deseti letech můžeme změnit první příčku ve velikosti primárního zrcadla našeho největšího dalekohledu - od počátku roku 2025 patří půlmetrovému zrcadlovému dalekohledu typu Newton.
Na hvězdárně se nyní stále něco děje – ale co přesně? Hlavní a největší částí modernizace hvězdárny je KKC, kromě toho nám ale přibyly nové kopule, renovuje se kamerová technika a mnoho dalšího...
S blížícím se koncem roku bych rád nabídl krátké ohlédnutí za činností astronomického kroužku a klubu v letošním školním roce. Orientace podle školního roku je sice trochu zavádějící, protože během jednoho kalendářního roku jeden školní rok končí a další začíná, ale v praxi to příliš nevadí. Pracujeme totiž převážně se stejnými dětmi, které se k nám pravidelně vracejí. Proto si dovolím zmínit i několik aktivit z předchozího školního roku.
Pomocí dalekohledu ESO/VLT astronomové podrobně zkoumali dosud nejvzdálenější známý intenzivní zdroj rádiového záření. Jedná se o takzvaný ‚rádiově hlasitý‘ kvasar – jasný objekt s mohutnými výtrysky vyzařujícími rádiové vlny. Nachází se tak daleko, že jeho světlu trvalo plných 13 miliard let, než dolétlo až k nám. Objev by mohl přinést důležité poznatky, které astronomům pomohou pochopit rané fáze vývoje vesmíru.
Teoretičtí fyzikové z Itálie, Španělska a Argentiny navrhli nový mechanismus pro vytvoření supermasivních černých děr (neboli veleděr) z temné hmoty. Standardní modely vzniku vyžadují normální baryonickou hmotu smršťující se v důsledku působení gravitace do podoby černých děr, které následně v průběhu času zvětšují svůj rozměr nabíráním další hmoty.
Úvodní kompozitní snímek představuje kupu galaxií vytvořenou v důsledku kolize dvou velkých galaktických kup. Horký plyn emitující rentgenové záření je znázorněn růžovou barvou a temná hmota (odvozená z jejího gravitačního působení) je zobrazena modře. Astronomové využili archivní data získaná rentgenovou družicí Chandra X-ray Observatory k vymezení pravděpodobnosti, že záhadná temná hmota ve vesmíru je tvořena tzv. sterilními neutriny.
Černá díra v binárním systému Cygnus X-1 je tak hmotná, že to zpochybňuje současné modely hvězdného vývoje. Zdroj rentgenového záření Cygnus X-1, který byl objeven v roce 1964, je binární systém nacházející se v souhvězdí Labutě. Hlavní (primární) hvězda HD 226868 je horký modrý veleobr obíhající kolem neviditelného kompaktního průvodce v periodě 5,6 dne. Průvodcem je tzv. hvězdná černá díra, což je třída černých děr, které vznikají při kolapsu velmi hmotných hvězd.
Astronomové detekovali lithium v atmosférách čtyř chladných a starých bílých trpaslíků; u jednoho z nich se rovněž projevuje atmosférický draslík. Tyto dva relativně překypující alkalické prvky vzhledem k sodíku a vápníku důrazně napovídají, že všechny čtyři hvězdy pohlcují fragmenty kamenných planet podobných Zemi či Marsu.
Astronomové využívající data z Hubbleova vesmírného teleskopu HST nalezli důkazy přítomnosti několika desítek černých děr hvězdné velikosti, schovávajících se v kolabujícím jádru kulové hvězdokupy NGC 6397, v jedné z nejbližších kulových hvězdokup vzhledem k Zemi. Hvězdokupa NGC 6397 je od Země vzdálená 7 800 světelných roků a její poloha se promítá do jižního souhvězdí Oltáře.
Planetka s přezdívkou „Farfarout“ a s oficiálním předběžným označením 2018 AG37 má potvrzenou velmi protáhlou oběžnou dráhu, na které se dostává do vzdálenosti 175 AU (astronomických jednotek) v době, kdy je nejdále od Slunce. Na druhé straně se dostává dovnitř dráhy planety Neptun, a to na vzdálenost 27 AU, když je Slunci nejblíže. Jeho průměrná vzdálenost od Slunce je 132 AU; pro porovnání: Pluto obíhá kolem Slunce v průměrné vzdálenosti 39 AU. Těleso označené 2018 AG37 obdrží oficiální pojmenování – podobně jako Sedna a další podobné objekty – později, až budou v průběhu příštích několika roků jejich dráhy lépe určeny.
Pomocí kamery Dark Energy Camera (DECam) na dalekohledu Víctor M. Blanco o průměru 4 metry, který je vybudován na observatoři Cerro Tololo Inter-American Observatory, byl pořízen působivý detailní snímek spirální galaxie s příčkou s označením Messier 83 (zkráceně M83). Nádherný snímek zachycuje galaxii, která je od nás vzdálená 15 miliónů světelných roků a její poloha se promítá do jižního souhvězdí Hydry. Její spirální ramena jsou lemována tmavými liniemi prachu a jsou doslova „posypána“ načervenalými oblaky plynného vodíku, kde probíhá intenzivní tvorba hvězd.
Vnitřní terestrické planety se vytvořily nejdříve, zdědily podstatné množství radioaktivního hliníku 26Al a tudíž se roztavily, vytvořily železné jádro a velmi rychle se zbavily plynu v podobě velkého množství jejich prvotních těkavých látek. Planety ve vnějších oblastech Sluneční soustavy zahájily akreci později a kromě toho s menším množstvím radiogenního ohřevu, a proto si udržely převahu zpočátku jimi soustředěných těkavých látek.
Tento kompozitní snímek ukazuje horkou skvrnu v atmosféře planety Jupiter. Na fotografii v levé části připojeného obrázku, pořízené 16. září 2020 pozemním dalekohledem Gemini North Telescope, Mauna Kea, Havajské ostrovy, se horká skvrna jeví velmi jasná v oboru infračerveného záření na vlnové délce 5 mikronů. Vložený obrázek vpravo pořídila kamera JunoCam na palubě sondy NASA s názvem Juno v oboru viditelného světla rovněž 16. září 2020 v průběhu 29. těsného průletu kolem Jupitera. Zde se horká skvrna jeví naopak docela tmavá.