Hvězdárna Valašské Meziříčí
www.astrovm.cz
   


25.09.2018
Letní putování vesmírem 2018

Je již tradicí, že s odcházejícím létem se ohlédneme zpět a hodnotíme proběhlé události. K nim patří i astronomické tábory pro děti od 7 do 15 let věku, které na hvězdárně pořádáme desítky let. Letošní skladba táborů byla následující: v červenci pobytový astronomický tábor a v srpnu příměstský tábor. 

03.09.2018
58. praktikum pozorovatelů proměnných hvězd a exoplanet

Před koncem prázdnin, v týdnu mezi 18. – 25. srpnem 2018, se na hvězdárně ve Valašském Meziříčí sešlo a sjelo celkem 16 účastníků praktika. Kromě několika zkušených pozorovatelů se objevily na této akci dvě novačky a osm nováčků. K tomu byl i přizpůsoben program praktika, kde prvotním úkolem bylo seznámit nové účastníky s technikou místní hvězdárny, kterou mohli využívat během pozorovacích nocí a zpracováním získaných dat. Kromě toho na praktikum přijelo několik účastníků se svou sestavou dalekohledů a jako snímací kamerou digitálními zrcadlovkami, aby se naučili tuto techniku využívat pro fotometrii proměnných hvězd.

18.06.2018
Opět pozorujeme! – Zákryty

V letošním roce se stalo pozorování zákrytů opět jedním z odvětví našich odborných pozorování. I přes špatné počasí z počátku roku se doposud (za období leden – květen) podařilo „napozorovat“ (tj. nahrát a vyhodnotit) několik úkazů (přehled v tabulce). Tato pozorování nám posloužila k otestování sestavy navržené pro pozorování.

Přihlašte se k odběru aktualit AKA, novinek z hvězdárny a akcí:

S Vašimi osobními údaji pracujeme dle našich zásad zpracování osobních údajů.

Více informací o zasílání novinek

Nacházíte se: Úvodní » Aktuality AK » VLT pořídil první přímé spektrum exoplanety!

VLT pořídil první přímé spektrum exoplanety!

13.01.2010

ESO 002/10 tisková zpráva

Při studiu planetárního systému se třemi tělesy, který svým vzhledem připomíná zvětšenou Sluneční soustavu, se astronomům poprvé podařilo pořídit přímé spektrum planety obíhající kolem cizí hvězdy. Získání tohoto 'chemického otisku prstu' [1] exoplanety [2] přináší nový pohled na její vznik a složení. Zároveň představuje významný pokrok ve snahách o nalezení života jinde ve vesmíru.

 „Spektrum planety, to je něco jako otisk prstu, který poskytuje informace o chemickém složení její atmosféry“, říká Markus Janson, hlavní autor článku. „Jakmile jej známe, je možné lépe pochopit, jak planeta vznikla, a v budoucnu možná budeme schopni tímto způsobem odhalit známky přítomnosti života.

Vědci pořídili spektrum obří planety, která obíhá kolem velmi mladé jasné hvězdy s označením HR 8799. Systém se nachází asi 130 světelných let od nás. Hvězda je o polovinu hmotnější než naše Slunce a vlastní planetární soustavu, která je zvětšeným 'modelem‘ té naší. V roce 2008 u této hvězdy jiný výzkumný tým odhalil trojici obřích planet 7 až 10krát převyšujících hmotnost našeho Jupiteru, které obíhají 20 až 70krát dále od své hvězdy než Země od Slunce. V systému byly detekovány také dvě oblasti malých těles – obdoba našeho pásma planetek a Kuiperova pásu.  
 
Objektem našeho zájmu byla prostřední z trojice planet, která je zhruba 10krát hmotnější než Jupiter a jejíž teplota se pohybuje kolem 800 °C,“ říká členka týmu Carolina Bergfors. „Po pětihodinovém pozorování jsme byli schopni odlišit spektrum planety od světla mnohem jasnější mateřské hvězdy.“  

Jedná se o první přímé spektrum exoplanety obíhající kolem obyčejné hvězdy téměř podobné Slunci. Pořízení spektra takového tělesa doposud vyžadovalo použití kosmického teleskopu při speciálním úkazu 'exoplanetáního zatmění', kdy planeta přecházela za diskem své mateřské hvězdy. Spektrum planety mohlo být extrahováno z dvojice spekter – samotné hvězdy a dvojice hvězda planeta jejich vzájemným odečtením. Tato metoda je však použitelná pouze v případě, že orientace oběžné dráhy planety je taková, aby k zákrytům vůbec docházelo, což ale platí jen pro velmi malý vzorek exoplanetárních systémů. Naše spektrum bylo naproti tomu získáno z povrchu Země, pomocí dalekohledu VLT, a to přímým pozorováním nezávislým na orientaci systému. 
 
Jelikož sledovaná hvězda je ve skutečnosti několiktisíckrát jasnější než planeta, jedná se o významný úspěch. „Je to jako když se snažíte zkoumat, z čeho je složena svíčka, která se nachází ve vzdálenosti dvou kilometrů a přitom hned vedle ní oslnivě září třistawattová lampa,“ říká Janson.

Objev bylo možné učinit pouze díky přístroji NACO pro infračervenou oblast, namontovanému na dalekohled VLT, a výjimečným schopnostem systému adaptivní optiky [3]. Od budoucího přístroje SPHERE, který bude na VLT instalován v roce 2011, jsou očekávány ještě preciznější výsledky.

Nově získaná data ukazují, že atmosféře této konkrétní planety stále ještě příliš nerozumíme. „Vlastnosti pozorovaného spektra nesouhlasí se současným teoretickým modelem,“ vysvětluje spoluautor práce Wolfgang Brandner. „Je potřeba vzít v úvahu detailnější popis atmosférických prachových oblaků nebo akceptovat, že atmosféra má odlišné chemické složení, než se dosud myslelo.

Astronomové doufají, že se jim v brzké době podaří získat spektra také zbylých dvou planet, aby poprvé mohli porovnat 'otisky prstů' trojice planet patřících k jednomu systému. „To jistě vnese nové světlo do výzkumu procesů, které vedou k formování planetárních systémů jako je ten náš,“ uzavírá Janson.
 

Zdroj

 
Poznámky

[1] Jak můžete vidět na příkladu duhy, bílé světlo lze rozdělit na několik základních barev. Astronomové také uměle rozdělují záření vzdálených objektů na jednotlivé barvy – vlnové délky. Jenže tam, kde lidské oko rozliší 6 základních barev, astronomové rozeznávají stovky a tisíce jednotlivých odstínů zaznamenaných jako spektrum – rozdílné množství světla vyzařovaného objektem na různých vlnových délkách ve velmi úzkých barevných pásmech.
Detaily ve spektru – větší či menší množství záření na daných vlnových délkách – poskytují informaci o chemickém složení hmoty, která světlo vytvořila. To činí ze spektroskopie velmi užitečný nástroj pro zkoumání vesmíru.

[2] V roce 2004 získali astronomové, díky použití přístroje NACO a dalekohledu VLT, spektrum objektu o hmotnosti 5 Jupiterů, který obíhal kolem hnědého trpaslíka. Předpokládá se, že dvojice se zformovala společně jako minidvojhvězda, namísto akrece hmoty v protoplanetárním disku kolem mladé hvězdy, což je obvyklé u planetárních systémů.

[3] Vlivem turbulentních proudů v atmosféře trpí pozemní dalekohledy rozmazáním a deformacemi obrazu. Díky turbulencím hvězdy blikají a 'poskakují'. To sice těší básníky, ale astronomům to komplikuje pozorování, neboť obraz ztrácí na detailech. S pomocí adaptivní optiky (AO) můžeme tyto nedostatky odstranit a pořizovat daným dalekohledem snímky s kvalitou na nejvyšší možné úrovni, tj. srovnatelné s dalekohledy na oběžné dráze. Systém adaptivní optiky pracuje tak, že rozostření vlivem turbulencí v atmosféře je potlačeno počítačově kontrolovanou deformací zrcadla dalekohledu. Změny tvaru korekčního zrcadla probíhají v reálném čase několiksetkrát za sekundu na základě zpracování informací z wavefront senzoru (speciální kamery), který sleduje světlo referenční hvězdy. 

Další informace

Výzkum je prezentován v článku připraveném k tisku jako Letter v časopise Astrophysical Journal pod názvem 'Spatially resolved spectroscopy of the exoplanet HR 8799 c', autorů M. Jansona a kol..

Složení týmu: M. Janson (University of Toronto, Kanada), C. Bergfors, M. Goto, W. Brandner (Max-Planck-Institute for Astronomy, Heidelberg, Německo) a D. Lafrenière (University of Montreal, Kanada). Přípravná data byla získána pomocí přístroje IRCS na dalekohledu Subaru.

ESO (Evropská jižní observatoř) je mezinárodní evropskou organizací pro astronomii. Jejími členy (14) jsou: Belgie, Česká republika, Dánsko, Finsko, Francie, Itálie, Německo, Nizozemí, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko a Velká Británie. ESO má za cíl vývoj, konstrukci a provoz výkonných pozemních dalekohledů, jenž zpřístupní astronomům významné vědecké objevy. ESO také hraje přední roli v astronomickém výzkumu a mezinárodní spolupráci. V současnosti provozuje světově jedinečné observatoře, jež se nacházejí na poušti Atacama Chile: La Silla, Paranal a Chajnantor. Na Paranalu ESO provozuje nejvyspělejší pozemní dalekohled pracující ve viditelném světle – Velmi velký dalekohled (VLT). Zároveň je ESO evropským zástupcem  největšího astronomického projektu všech dob – teleskopu ALMA. V současnosti ESO plánuje výstavbu Evropského extrémně velkého dalekohledu (E-ELT), který bude mít průměr primárního zrcadla 42 metrů. Bude pracovat ve viditelném a infračerveném oboru a stane se největším dalekohledem světa.

Odkazy

Kontakty

Markus Janson; University of Toronto; Toronto, Canada; Tel: +1 416 946 5465; Email: janson@astro.utoronto.ca

Wolfgang Brandner; Max-Planck-Institute for Astronomy; Heidelberg, Germany; Tel: +49 6221 528 289; Email: brandner@mpia.de

Překlad: Jiří Srba, Hvězdárna Valašské Meziříčí
Národní kontakt: Pavel Suchan +420 267 103 040; suchan@astro.cz


   
Tato stránka je vytištěna z webu www.astrovm.cz
Těšíme se na Vaši návštěvu.
WebArchiv Hvězdárna Valašské Meziříčí, příspěvková organizace, Vsetínská 78, 757 01 Valašské Meziříčí
Příspěvková organizace Zlínského kraje. Telefon: 571 611 928, E-mail: info@astrovm.cz, Vyrobil: WebConsult.cz
Jak chráníme Vaše osobní údaje