Hvězdárna Valašské Meziříčí
www.astrovm.cz
   


Logo veřejné zakázky a poptávky

21.12.2017
Podzimní turné s vědou pro děti

Naše turné s vědou a pohádkou začalo na konci září a skončilo pár hodin před příchodem astronomické zimy (17h 45min; 21. 12. 2017). Téměř 400 dětí z mateřských a základních škol (Růžďka, Branky, Nový Jičín, Lipník nad Bečvou, Mikulůvka, Bordovice, Pržno, Všechovice) se účastnilo vědeckého poznávání světa a zjistilo, že: 

11.12.2017
Zvyky a symboly Vánoc na hvězdárně

Poslední měsíc v roce patřil na hvězdárně nejmenším návštěvníkům. Připravili jsme pro ně program o Vánocích, ve kterém jsme typicky vánoční zvyky a symboly podrobněji prozkoumali.

11.11.2017
Ohlédnutí za Týdnem vědy a techniky Akademie věd ČR 2017

Za největším vědeckým festivalem v České republice můžeme udělat pomyslnou tečku. Hvězdárna Valašské Meziříčí, p. o. se stala již po druhé spolupracující organizací Akademie věd ČR v rámci akce s názvem Týden vědy a techniky Akademie věd ČR.   Festival vědy a techniky se odehrával od pondělí 6. 11. 2017 do soboty 11. 11. 2017. Jak probíhal týden zasvěcený vědě a technice na hvězdárně ve Valašském Meziříčí? V celém areálu hvězdárny bylo náležitě rušno. Na hvězdárnu zavítalo 995 návštěvníků.

Přihlašte se k odběru aktualit AKA, novinek z hvězdárny a akcí:

Více informací o zasílání novinek

Nacházíte se: Úvodní » Aktuality AK » Jak se vaří mlha na Titanu?

Jak se vaří mlha na Titanu?

11.06.2013

Tato fotografie v přirozených barvách zachycuje horní vrstvy atmosféry největšího Saturnova měsíce Titan, která je místem, kde dochází k rozbíjení molekul metanu působením ultrafialového záření Slunce. Vzniklé produkty se spojují a vytvářejí sloučeniny, jako je etan a acetylén. Mlha zahalující celý měsíc rozptyluje především modré a ultrafialové světlo a vytváří tak složitou vrstevnatou strukturu mnohem lépe pozorovatelnou na kratších vlnových délkách.

Ve spodní vrstvě atmosféry mlha přechází do vrstvy smogu, který globálně obklopuje měsíc v podobě složitějších organických molekul. Tato hustá, oranžově zbarvená mlha pohlcuje viditelné světlo přicházející ze Slunce. Pouze asi 10 % přicházejícího slunečního záření dopadá na povrch Titanu. Hustá mlha není účinná při udržení tepla a při jeho opětovném vyzáření směrem k povrchu. Tudíž nehledě na skutečnost, že Titan má mnohem hustější atmosféru než Země, přítomná hustá globální mlha způsobuje skleníkový efekt podstatně slabší než v případě Země.

Fotografie v úvodu článku, která byla pořízena pomocí širokoúhlé kamery na palubě sondy Cassini přes červený, zelený a modrý filtr, představuje pohled odpovídající přírodním barvám. Snímek byl pořízen ze vzdálenosti zhruba 9 500 kilometrů.

Atmosféru Titanu objevil Gerard P. Kuiper v roce 1944, kdy byl ve spektru měsíce objeven plynný metan, kterého je v atmosféře téměř 5 %. Nejvíce je v ovzduší zastoupen dusík (zhruba 95 %), indikovány byly i další plyny. Nejexotičtější složky atmosféry Titanu vznikají v jeho horních vrstvách, kde je metan štěpen působením ultrafialového záření. Dalšími reakcemi pak vznikají uhlovodíky jako etan, acetylén či etylén. Pravděpodobně se vytvářejí i složitější řetězce. Tyto látky následně kondenzují v nejchladnějších vrstvách atmosféry do podoby drobných částic. A právě tyto částice o průměru několika desetin mikrometru způsobují typický oranžový zákal v atmosféře Titanu.

Na dalším obrázku je ukázáno několik různorodých kroků, které vedou ke vzniku aerosolů vytvářejících hustou oranžovou mlhu v atmosféře Titanu. Když sluneční záření a vysoce energetické částice urychlované magnetosférou planety Saturn bombardují vnější vrstvy atmosféry Titanu ve výškách nad 1 000 kilometrů, rozbíjí zde přítomné molekuly dusíku a metanu. Dochází k vytváření těžkých kladných iontů a elektronů, které spouští řetěz chemických reakcí vedoucích k vytváření rozmanitých uhlovodíků. Většina těchto uhlovodíků byla v atmosféře Titanu detekována, včetně tzv. polycyklických aromatických uhlovodíků (polycyclic aromatic hydrocarbons, PAHs). Jedná se o velké molekuly na bázi uhlíku, které vznikají seskupením malých molekul uhlovodíků. Některé z molekul PAH detekovaných v atmosféře Titanu rovněž obsahují atomy dusíku.

Polycyklické aromatické uhlovodíky jsou prvním krokem v posloupnosti vzniku velkých sloučenin. Modely ukazují, jak se mohou PAH spojovat a jak vznikají velké struktury, které mají tendenci klesat do spodních vrstev atmosféry v důsledku jejich větší hmotnosti. Větší hustota spodních vrstev atmosféry Titanu je příznivá pro další růst těchto velkých konglomerátů atomů a molekul. Tyto reakce nakonec vedou k produkci aerosolů na bázi uhlíku. Jedná se o velké aglomeráty atomů a molekul, které byly objeveny ve spodních vrstvách mlhy, která zahaluje měsíc Titan ve vrstvě tlusté zhruba 500 kilometrů.

Při jednotlivých průletech sondy Cassini v blízkosti měsíce Titan byly pomocí hmotového spektrometru detekovány nabité i neutrální částice v jeho atmosféře. Ve vysokých výškách atmosféry byly odhaleny různorodé uhlovodíky včetně například benzenu.

Protože při výše popsaných procesech se v atmosféře Titanu snižuje množství metanu, který je ale stále přítomen v dostatečném množství, musí být do ovzduší doplňován. Odpařuje se z jezer kapalného metanu, která byla objevena na základě radarových pozorování. Druhým největším známým jezerem na Titanu je Ligeia Mare (420 x 350 km) – viz obrázek v nepravých barvách. Je jedním z mnoha jezer pozorovaných na severní polokouli největšího Saturnova měsíce.

Chris McKay a Heather Smithová předpokládají, že na Titanu mohou existovat živé organismy, které k dýchání nepotřebují kyslík jako většina živých tvorů na Zemi, ale dýchají vodík. A živí se organickými molekulami, které se nacházejí v atmosféře. Patří mezi ně etan, acetylén a další složitější organické sloučeniny. Jestliže se v laboratořích ozáří vzorek Titanovy atmosféry (tj. směsi uhlovodíků a dusíku), vznikne červenohnědý prášek, který byl nazván tholin. Je to neobyčejně složitá organická látka. Ve vodě se rozpouští a uvolňuje aminokyseliny – základní složky bílkovin. Tholin je zřejmě původcem červenohnědého smogu v atmosféře Titanu. Jeho částice zvolna padají k povrchu a zde se usazují.

Zdroj: http://saturn.jpl.nasa.gov/photos/imagedetails/index.cfm?imageId=4825 a http://en.wikipedia.org/wiki/Tholin

autor: František Martinek


   
Tato stránka je vytištěna z webu www.astrovm.cz
Těšíme se na Vaši návštěvu.
WebArchiv Hvězdárna Valašské Meziříčí, příspěvková organizace, Vsetínská 78, 757 01 Valašské Meziříčí
Příspěvková organizace Zlínského kraje. Telefon: 571 611 928, E-mail: info@astrovm.cz, Vyrobil: WebConsult.cz