

EURÓPSKA ÚNIA EURÓPSKY FOND REGIONÁLNEHO ROZVOJA SPOLOČNE BEZ HRANÍC

FOND MIKROPROJEKTŮ

Meteorické roje a ich materské telesá

Leonard Kornoš

Pokroky ve výzkumu meziplanetární hmoty a rozvoj spolupráce

Katedra astronómie, fyziky Zeme a meteorológie FMFI UK Bratislava

23. 5. 2015

Motivácia

- identifikácia materských telies, pôvod a fyzikálne charakteristiky kometárne – asteroidálne
- komplexy problematické vysvetlenie veľmi dlhej aktivity meteorického prúdu Tauríd
 - pokladá sa za člena väčšieho komplexu, tvoreného kométou 2P/ Encke, niekoľkmi meteorickými rojmi a blízkozemskými asteroidmi typu Apollo
- uvažovaný mechanizmus
 - rozpad väčšieho materského telesa
- viaceré štúdie ďalšie navrhované komplexy
 - komplex 96/P Machholz
 - Kreutzova skupina komét
 - rodiny blízkozemských asteroidov po slapovom rozpade

Obsah

- vznik prúdu
- identifikácia materského telesa
- Kvadrantidy
- komplex Tauríd
- Mellish a jej roje
- asteroidálne meteorické roje

Perzeidy Leonidy

Giovanni Virginio Schiaparelli

Úvod – prúd meteoroidov

kométa asteroid → m

→ meteorický prúd

kométa – pravidelné dopĺňanie materiálu

- sublimácia ľadu
- uvoľnenie prachových častíc
- unikové rýchlosti ~ 10 100 m/s
- rozptyl častíc pozdĺž dráhy kométy
- premiešavanie materiálu z rôznych návratov kométy k perihéliu
- hmotnostná separácia prachových častíc

jadro kométy 103P/Hartley

Úvod – prúd meteoroidov

kométa asteroid → meteorický prúd

asteroid – zvyčajne jednorazová udalosť

- zrážka s iným asteroidom
- slapový rozpad
- tepelné pnutie
- kozmické zvetrávanie
- YORP efekt

Yarkovsky–O'Keefe–Radzievskii–Paddack

Itokawa, 520 x 270 x 230 m

IAU Meteor Data Center

- január 2015:
- 95 established showers
- 462 working list
 - a 81 pro tempore
- rastie počet nových objavených rojov
 - radar a video technika
 - iba niekoľko z nich má spoľahlivo určené materské teleso

Identifikácia materských telies (1)

jednoznačné identifikácie – viaceré hlavné roje
 zreteľne odlíšiteľné od sporadického pozadia

		Vg	Incl
Apr. Lyridy	C/1861 G1 Thatcher	48 km/s	79 deg.
eta Akvaridy	1P Halley	66	164
Orionidy	1P Halley	66	164
Perzeidy	109P Swift-Tuttle	59	114
Drakonidy	21P Giacobini-Zinner	20	31
Leonidy	55P Tempel-Tuttle	71	163
Tauridy	2P Encke	12	27
Geminidy	3200 Phaethon	35	24

Identifikácia materských telies (2)

je veľa prúdov bez jednoznačnej identifikácie s materským telesom

- kometárne jadro je neaktívne
- teleso je inde ako prúd rozdielny dráhový vývoj
- teleso sa rozpadlo (Biela)
- veľmi široký a slabý prúd
- je viacero kandidátov, spätná integrácia je nespoľahlivá (Jupiter, rezonancie)
- blízkoekliptikálne prúdy (malé sklony, priemerné excentricity)
 - veľké množstvo telies
- fyzikálne pozorovania povrchové, rotačné vlastnosti, spektrá meteorov, výšky horenia

Comet LINEAR Fragments August 5, 2000 C/1999 S4

HST

University of Hawaii 2.2 m

Hubble Space Telescope WFPC2

> NASA and H. Weaver (JHU) STScI-PRC00-27

Porovnávanie dráh

- D-funkcia miera podobnosti dráh v 4 alebo 5 fázovom priestore na základe :
 - Keplerových elementov
 (Southworth-Hawkins 1963, Drummond 1981, Jopek 1993, ...)
 q, e, Incl, Peri, Node
 každé má svoje výhody a nevýhody
 - pozorovaných veličín radiant, geocentrická rýchlosť, dĺžka Slnka (Valsecchi, Jopek, Froeschlé, 1999)
 L_S, Vg (veľkosť, smer do antiradiantu)
 - noment hybnosti, vektorové elementy, mtóda indexov, G-mode a i.

Vyhľadávanie členov prúdu

D_{SH} – miera podobnosti dráh v 5 fázovom priestore

$$D_{SH}^{2} = [e_{2} - e_{1}]^{2} + [q_{2} - q_{1}]^{2} + \left[2\sin\frac{I_{21}}{2}\right]^{2} + \left[\left(\frac{e_{1} + e_{2}}{2}\right)\left(2\sin\frac{\pi_{21}}{2}\right)\right]^{2}$$

Southworth, Hawkins, 1963

kde π_{12} a I_{12} sú ďalej definované tak, aby boli ošetrené aj vetvy roja

- problematické nastavenie limitnej hodnoty D
 - rôzne prístupy
- iteračná procedúra vyhľadávania meteorov prúdu
 Porubčan, Gavajdová, 1994

Kumulatívny nárast počtu meteorov v roji s rastúcou hodnotou D

Neslušan et al. 1995

Podobnosť dráh členov prúdu a materského telesa

použitím niektorého kritéria:

- porovnávane členov prúdu s potenciálnym materským telesom
- dráha telesa je referenčná
- ide o provnávanie okamžitých (oskulačných) dráh
 - neistota dráhy potenciálneho materského telesa
 - určenie strednej dráhy prúdu alebo jeho filamentov
- porovnávanie dynamického vývoja

Uhlové elementy

Cyklus argumentu šírky perihélia (ω)

schematický náčrt

trvá niekoľko tisíc rokov

významná zmena q, e, i

q, e ~ 0.1 – 0.9 i – niekoľko desiatok stupňov

na obr. :

roje 1-4 – rovnaké hodnoty e, i v skutočnosti aj pre iné hodnoty e, i môže nastať **Rd, Ra = 1 AU**

Babadzhanov, 1987

Kvadrantidy

- aktivita začiatkom januára, ostré úzke maximum
- krátkoperiodická dráha Jupiterovej rodiny
- vysoký sklon k ekliptike, 70°
- R_d pri Zemi, R_a v blízkosti Jupitera silný vplyv
- časť prúdu blízko 2:1 $\rightarrow d\Omega/dt$ prúd sa môže štiepiť
- veľké zmeny q, e, i
- súčasťou komplexu 96P/Machholz
 - □ 96P, **2003 EH1**, (5496)
 - niekoľko rojov
 - ostré maximum mladý filament malé disperzie (~ 500 r.)

Kornoš, Porubčan: (2004) Porubčan, Kornoš: (2005)

Kornoš a kol., 2013, 2014

Filamenty v Kvadrantidách

Dráhy, radianty (α , δ) a geocentrické rýchlosti (V_g) fotografických filamentov Kvadrantíd a potenciálnych materských telies.

filament	Q (AU)	q (AU)	a (AU)	е	<i>i</i> (°)	ω (°)	Ω (°)	π (°)	α (°)	δ (°)	V _g (km/s)
Q-1 Q-2 Q-3 Q-4 Q-5	4,75 4,88 4,49 5,38 5,28	0,982 0,977 0,980 0,974 0,981	2,867 2,931 2,735 3,176 3,131	0,657 0,666 0,641 0,693 0,686	72,0 72,2 70,8 70,9 72,9	176,8 170,3 173,3 168,0 174,5	282,7 283,2 283,3 283,3 283,0	99,5 93,5 96,7 91,4 97,6	227,2 230,2 229,8 232,6 228,2	50,6 48,8 49,7 48,9 49,7	41,2 41,3 40,7 41,0 41,8
2003 EH1 (5496) 96P C/1490 Y1	5,06 3,99 5,91 5,73	1,192 0,883 0,124 0,854	3,128 2,435 3,015 3,290	0,619 0,637 0,959 0,741	70,8 68,0 60,1 74,5	171,4 118,1 14,6 166,5	282,9 101,1 94,6 281,0	94,3 219,2 109,2 87,5	229,9	49,6	40,2

C/1490 Y1 – Hasegawa (1979); Wu, Williams (1993)

96P/Machholz – McIntosh (1990)

(5496) 1973 TA – Williams, Collander-Brown (1998)

2003 EH1 – Jenniskens (2003)

Q-2 – 2003 EH1

96P/Machholz – 2003 EH1

96P/Machholz – 2003 EH1

- bez negravitačných efektov prepojenie 96P a 2003 EH1
 niekoľko desaťtisíc rokov príliš dlho
- 1 cyklus ω 8 pozorovateľných rojov (Babadzhanov, 1992)
- najnovšie práce
 - testovacie častice opakovane uvoľňované v perihéliu
 - komplex rojov 96P a 2003 EH1 takmer identické
 - 4 ekliptikálne roje, 2 toroidálne (*Neslušan a kol., 2013*)
 - denné Arietidy (H), S a J delta Akvaridy, (alfa Cetids) (AH)
 - Kvadrantidy (NT), (kapa Velids) (ST)
- Teoretický radiant telesa

Modelové prúdy

Neslušan et al. 2013

APEX

APEX

Neslušan et al. 2013

Komplex Tauríd

- rozsiahly difúzny prúd
 - dlhotrvajúca jesenná aktivita
 - jasné meteory
- spájaný s kométou 2P/Encke
 - najkratšia obežná doba 3,3 roka
 - odpútala sa od Jupitera bez negravitačných efektov príliš dlho
- vďaka malému sklonu jesenná nočná a letná denná aktivita
 - štiepi sa na dve vetvy
 - S,J Tau / denné delta Tau a zeta Per (nočné / denné)
- ďalšie roje: J Pisdcidy, S,J Arietidy, S,J *chi* Orionidy a i.

Vetvy Tauríd

Armagh Observatory

Schematický náčrt a podmienka pozorovateľnosti vetiev prúdu

 $r = 1AU = \frac{a(1 - e^2)}{1 \pm e \cos \omega}$

Babadzhanov, 2001

Filamenty Tauríd

- denný pohyb radiantu
- stredná dráha N, S tau
- zmena elementov ako funkcia ekliptikálnej dĺžky (L = L_S L_{max})

Vyhľadávanie filamentov komplexu

- \square D_{SH} < 0,1 + iteračná metóda
- denný pohyb radiantu
- $\ \ \, \ \ \, = \quad zmeny \ \omega, \ \Omega$
- 15 filamentov, 4 56 členov
- aktivita 120° (september december)
- stáčanie celej elipsy (dĺžka perihélia)
- stotožnené N,S Psc, S Ari, N,S Tau, N,S chi Ori, (rho Gem)
- typické kometárne / asteroidálne dráhy

Štohl, Porubčan, 1992, Porubčan, Kornoš, 2006

Radianty komplexu – fotografické

Štohl a Porubčan, 1992

Filamenty Tauríd

videodatabáza SonotaCo

Buček, 2011

Asteroidy v komplexe

- dnes ~ 11 000 NEO
 - náhodné priradenia časté
 - krátke oblúky pozorovaní
- nedostatok fyzikálnych pozorovaní
 - ťažko pozorovateľné
 - v dosahu nepravidelne
 - rýchly pohyb po oblohe
 - zmena jasnosti
 - zmena fázového uhla

Materské telesá komplexu 1

- kométa Encke je uprostred komplexu, súhlasí aj orientácia dráhy v dĺžke perihélia
- trvanie aktivity, rozptyl dráh, lokálne zhustenia kométa Encke a postupný poruchový rozptyl nestačí
- Whipple, Hamid 1952 navrhli hierarchickú dezintegráciu pôvodného telesa
- v obmenách sa myšlienka opakuje, navrhlo sa teleso typu
 (2060) Chiron = 95P, rozpadnuté pred 20 30 tisíc rokmi
- Kresák priraďuje aj Tunguský meteorit z r. 1908
- Farinella a kol. (2001) pravdepodobne asteroidálneho pôvodu

Materské telesá komplexu 2

- do komplexu navrhované viaceré asteroidy uvažované ako vyhasnuté kometárne jadrá, tiež kométa Rudnicki
- viacerými prístupmi ~ 20 30 telies typu Apollo
 - rôzne modifikované kritériá podobnosti dráh
 - sekulárny vývoj
 - kvázi-stacionárne parametre

$$\mu = [a(1 - e^{2})]^{1/2} \cos i$$
 (Lidov, 1961, Kozai 1962)

$$v = e(0.4 - \sin^{2} i \sin^{2} \omega)$$
 (Moisejev, 1945)

$$T = a_{J} / a + 2\sqrt{a / a_{J}(1 - e^{2})} \cos i$$
 (Tisserand, 19. stor.)

Tisserandov parameter

hranica medzi kométami a asteroidmi T = 3,0

> kométa Encke T = 3,03

Materské telesá komplexu 3

Materské telesá komplexu – výber

- vybraných 91 objektov s podobnými orbitálnymi charakteristikami a teoretickými radiantmi (Neslušan a kol., 1998)
- integrácia na 5000 rokov do minulosti
- porovnanie dráhového vývoja asteroidov s filamentami (D_{SH}, π):
 - hľadajú sa spoločné body v minulosti
 - väčšina asociácií sa nepotvrdila
 - napr. (6063) Jason, (4197) 1982 TA, (4341) Poseidon
 - navrhujeme niektoré nové
Radianty komplexu

Výšky horenia meteorov

Buček, 2011

Spektrá meteorov – pomoc pri identifikácii materského telesa

Borovička et al. 2005

Geminidy

- q~ 0.14 AU, Vg 35 km/s
- veľmi kompaktný roj / prúd ukážkový
- 3200 Phaeton žiadna alebo len veľmi malá aktivita
- v spektrách široký rozsah zastúpenia Na
- súvisí s dĺžkou pobytu meteoroidu ako samostatného telesa ?
 - Geminidy nevznikli z jednorazovej udalosti (Borovička et al. 2005)

Borovička et al. 2005)

Kométa C/1917 F1 Mellish

- pozorovaná pri jednom návrate
- q ~ 0.19, i ~ 32 deg, P ~ 145 rokov
- výstupný a zostupný uzol pomerne ďaleko od dráhy Zeme
- zmena excentricity o -0.002 \rightarrow Ra ~ 1.01 AU
- materské teleso Decembrových Monocerotíd
- Novembrové Orionidy podobná dráha, Vg rovnaká
 - rozdiel v sklone 10°
 - v radiante ~ 10°
- SonotaCo databáza 111 / 110 meteorov

Kométa C/1917 F1 Mellish

Roje kométy C/1917 F1 Mellish (?)

Kumulatívne rozdelenie absolútnych magnitúd

Výstupný a zostupný uzol

Výšky horenia

Kométa C/1917 F1 Mellish a jej roje

- numerické integrácie meteorov a klonov kométy
- je dynamické prepojenie medzi oboma prúdmi spoločné body v minulosti
- nevieme vysvetliť medzeru v sklonoch (Vereš et al. 2011)
- simulácia 10 000 modelových častíc na 50 000 rokov
 - Dec. Monocerotidy pochádzajú z Mellish
 - Nov. Orionidy (zatiaľ) nepotvrdené (Neslušan et al. 2014)

Asteroidálny pôvod prúdov

kométa asteroid → meteorický prúd

asteroid – jednorazová udalosť

- zrážka s iným asteroidom
- slapový rozpad
- tepelné pnutie
- YORP efekt rotácia

Argumenty pre:

- snímky štruktúry povrchu Itokawy
- rotačná bariéra asteroidov (~ 2.2 hod)
- pohyb materiálu na povrchu (Itokawa)

povrch asteroidu Itokawa

Asteroidálne meteoroidy

- pád meteoritu Neuschwanstein (2002)
- na identickej dráhe meteoritu Příbramu (1959)
- odlišné typy meteoritov a rozdielny kozmický
 vek
- heterogénny prúd?
- (Spurný P. et al., 2003).
- Slapový rozpad Roche hranica ~ 2 R_z
- prúd telies vo veľkom intervale veľkostí

Rozpad "Itokavy" v dvoch okamihoch v minulosti

Aktivita v súčasnosti (1 cm častice)

Tóth, Vereš, Kornoš: (2011), Mon. Not.R. Astron. Soc. 415, pp. 1527-1533

Väčšie telesá

- útvar Davy na Mesiaci
- Příbram Neuschwanstein
- Čeljabinsk (86039) 1999 NC43
- na základe impaktnej frekvencie
 - rozpad 200 m telesa raz za 6000 7000 rokov
 - niekoľko slabých prúdov v blízkosti Zeme
 - □ rodiny NEO objektov (Schunova et al., 2014), 10⁴ 10⁵ rokov

Apollo 12

Záver

- štrukúra meteorických prúdov a komplexov môže byť veľmi komplikovaná
- pôvod v matereských telesách zahmlený viacerými efektami
- dynamické cesty sa zvyčajne nájdu
- fyzikálne charakteristiky málo známe !!

je potrebné:

- systematické pozorovania meteorov (aj spektrálne)
 - získavame informácie o materských telesách ďaleko do minulosti
- prúdy telies v blízkom okolí Zeme nás priamo ovplyvňujú:
 - ohrozenie družíc na obežnej dráhe
 - typ Čeljabinsk
 - užitočné (malé asteroidy)

Ďakujem za pozornosť

Lyridy – základné údaje

- pravidelný meteorický roj IAU #006
- 14.-26. apríl, max. 21.-22. (L_S 32.4°)
- 5-10 meteorov / hod
- občasné zvýšenia aktivity až 100 / hod
- niektoré staré záznamy sa spájajú s výraznou aktivitou Lyríd
 687 BC, 15 BC
- výrazne zvýšená aktivita napr. 1803 (Olivier 1925)
- 1922, 1934, 1946, 1982 (50-600 meteorov) (Lindblad, Porubčan, 1991)
- náznak 12 rokov cyklus ? (Guth 1947, a i.)

Kométa Thatcher

- C/1861 G1 Thatcher
- 415 rokov, i = 79°
- 187 astrometrických polôh 149 dní oblúk, Oppolzer (1864)
 - vizuálne mikrometrické pozorovania
- Weis (1867) R_D ~ 0.002 AU od dráhy Zeme
- R_D ~ 1 AU, R_A blízko dráhy Saturna
- Galle (1867) dráhová podobnosť kométy a prúdu Lyríd

Numerické integrácie

Plán

- vypustiť modelové častice z jadra kométy v niekoľkých prechodoch perihéliom v minulosti
- integrácia dráhy kométy Thatcher 50 000 rokov do minulosti a naspäť do súčasnosti
- integrátor RADAU RA15 (balík Mercury 6, Chambers, 1999)
- nie je možné získať východziu dráhu z r. 1861

preto TESTY

Testy integrácií

- kométa Thatcher po integrácii 50000 rokov, riešenia v intervale:
 - $\Delta q = \pm 0.1 \text{ AU}$
 - $\Delta e = \pm 0.2$
 - · i, ω , Ω niekoľko málo stupňov
- veľká polos v intervale 20 200 AU (krajné hodnoty) ??? !!!
- odpovedajúce V_h (43.383, 43.841) $\rightarrow \Delta V_h = 0.458$ km/s
 - a = (42.0, 56.0) AU \rightarrow V_h (43.650, 43.711) \rightarrow Δ V_h= 0.060 km/s
- detailné štúdium nie je možné
- dynamický priestor sa zachováva

Lyridy – simulácie

- zjednodušený model uvoľňovania častíc
- v prechodoch perihéliom:
 - -10000, -20000, -30000, -40000, -50000 rokov
- uvoľnené častice kolmo k povrchu jadra kométy
 - pozdĺž rovníka a ±10°, ±20° rovnobežiek s odstupom 1°
 - na každej čiare 180 častíc, spolu 900
 - · os jadra je kolmá na rovinu dráhy kométy

Modelové častice po integrácii

Stredné parametre pre prúdy spred 10000 – 50000 rokov

do blízkosti dráhy Zeme,

 R_d (0.98 – 1.02) AU sa dostane v súčasnosti spolu 785 častíc

Filament	α	δ	V_g	q	е	ω	Ω	Ι	D_{SH}	N
L10	272.8	33.1	47.46	0.921	0.984	213.3	32.4	80.7	0.009	271
	± 1.0	0.6	0.46	0.010	0.003	0.7	0.6	1.1	0.005	
L20	271.2	33.3	47.13	0.915	0.984	214.1	31.2	79.8	0.009	203
	± 1.4	0.7	0.55	0.011	0.004	1.0	0.9	1.4	0.006	
L30	270.4	33.6	46.79	0.914	0.984	214.6	30.8	79.0	0.008	146
	± 1.6	0.9	0.70	0.010	0.005	1.3	1.1	1.7	0.005	
L40	271.9	32.8	47.40	0.911	0.984	214.5	31.9	80.4	0.010	154
	± 1.8	0.7	0.54	0.014	0.005	2.1	1.2	1.4	0.010	
L50	277.1	33.8	47.62	0.937	0.969	208.9	35.2	81.5	0.011	11
	± 3.1	1.0	0.66	0.016	0.006	3.6	3.3	1.6	0.006	
EDMOND	272.1	33.3	46.5	0.919	0.941	214.5	32.1	79.4		
Thatcher				0.921	0.983	213.4	31.9	79.8	3	

Poznámky k výsledkom

- R_d ~ 1 AU
- R_a ~ 7 20 AU
- rozloženie častíc nezávisí od smeru uvoľnenia z povrchu jadra kométy
- obrazec rozloženia v (R_d a) sa nemení, ani keď sú častice vypustené vysoko nad/pod rovníkom (test do ± 60°)
- dôvod dlhodobá integrácia zahladí jemné efekty polohy a smeru vypustenia častíc
- častice s a < 20 AU nevzišli zo simulácie
- výstupný uzol častíc sa s dĺžkou integrácie posúva k väčšej heliocentrickej vzdialenosti

Mean orbit of Lyrids form EDMOND

Welch (2001) eq. (4) applied :

$$\rho_{j} = \sum_{i=1}^{N} \left(1 - \frac{D_{ij}^{2}}{D_{c}^{2}} \right) ; \quad D_{ij} \leq D_{c}$$

 ρ_i - group density at point *j* in orbital element space

weighted mean and SD
$$w_i = \left(1 - \frac{D_{ij}^2}{D_c^2}\right)$$

source	L_S	RA	Dc	V_g	q	е	ω	Ω	i
EDMOND	32.1	272.1	33.3	46.5	0.919	0.941	214.5	32.1	79.4
±	0.7	1.2	0.5	0.6	0.006	0.032	1.3	0.7	1.1
IAU MDC	32.4	272.0	33.3	46.6	0.921	(<u>) - 111</u>	214.3	31.8	79.6
Thatcher					0.921	0.983	213.4	31.9	79.8

Comparison of 125 and 85 orbits obtained by Welch method

Asteroidálne meteoroidy

- Pád meteoritu Neuschwanstein (2002) na identickej dráhe meteoritu Příbramu (1959)
- odlišné typy meteoritov a rozdielny kozmický vek

heterogénny prúd? (Spurný P. et al., 2003).

 Frekvencia veľmi tesných priblížení (~ 2R_{Earth}) NEA s veľkosťou Itokawy (0,5 km) je ~ 1 za 25 000 rokov (*Ivanov, 2006*). (bez rotácie)

Prúd meteoroidov

- dráha typu Apollo
- tesné priblíženie k Zemi
 Roche hranica ~ 2R_{Earth} (13 min.)
 podobný asteroidu Itokawa
 únikové rýchlosti ~ 10 cm/s
- 100 testovacích častíc
- za niekoľko storočí distribúcia pozdĺž dráhy
 - veľmi kompaktný prúd

Kornoš et al.: (2009), Contrib. Astron. Observatory Skalnaté Pleso 39, 18-24

Itokawa ~ 500 m

Jaxa

Prúd meteoroidov

- dráha typu Apollo
- tesné priblíženie k Zemi
 Roche hranica ~ 2R_{Earth} (13 min.)
 podobný asteroidu Itokawa
 únikové rýchlosti ~ 10 cm/s

- 100 testovacích častíc
- za niekoľko storočí distribúcia pozdĺž dráhy
 - veľmi kompaktný prúd

Kornoš, Tóth, Vereš: (2009), Contrib. Astron. Observatory Skalnaté Pleso 39, 18-24

 dráhový vývoj filamentov a potenciálnych materských telies na 5000 rokov do minulosti

Časový vývoj výstupného a zostupného uzla

Q-3 - 2003 EH1

Q-4

Výšky horenia meteorov

~ 28 km/s

~ 47 km/s

Výšky horenia

Výšky horenia

Výšky horenia

Materské telesá komplexu 4

asociácia	α (°)	δ (°)	V _g (km/s)	Н (1,0)	Rozmer (m)	D _{SH}	perióda
Tau 05 2003 QC10	16 16	1 2	26 24	17,83	800 – 1700	0,07 – 0,06	5000
Tau 10 2004 TG10	58 55	22 22	28 30	19,40	390 – 880	0,25 – 0,05	4500
Tau 15 2002 XM35	85 81	26 26	28 28	22,96	70 – 160	0,25 – 0,05	3300
Tau 16 2002 XM35 2003 UL3	77 81 67	18 26 22	27 28 26	22,96 17,85	70 – 160 700 – 1600	0,25 – 0,05 0,25 – 0,05	3300 3200

Rocheho hranica ako funkcia rotácie asteroidu

Tóth, Vereš, Kornoš: (2011), Mon. Not.R. Astron. Soc. 415, pp. 1527-1533

Earth Distance: 8.6798 au Radius: 6,378.1 km Apparent diameter: 0° 00' 2.0"

Venus

At 6 AU the curret nucleus is inactive and the corret has no tail.

Jupiter's Orbit

By 4 AU the comer nucleus is starting to become active

The contet now has a well defined tail.

The tail may now be 1-2 AU long.

Earth's Orbit

The comet is at perihellon.

Once again, beyond 6 AU the comet nucleus is inactive.

Model II

- orbit of Příbram integrated back
- close encounter with the Earth within Roche limit ~ 2R_{Earth} (for 13 min.)
- Itokawa like asteroid ~ 3,5.10¹⁰ kg
- 3100 test particles released
 3300 and 4200 years ago

Hayabusa - Jaxa

- presented on Bolides and Meteorite Falls in Prague 2009 (Tóth)
- presented on EPSC 2009 in Potsdam (Vereš)

Motivation

- The fall of Neuschwanstein meteorite (2002) & similar orbit of Příbram meteorite (Spurný P. et al., 2003).
- Different types of meteorites and cosmic-ray exposure time
 - heterogeneous stream?
- Evidence of internal porosity (Mathilde), detailed surface images (Itokawa), spin barierr of asteroids (D > 200m) – cracked interior or rubble-pile structure
 - movement of rubble and dust on the surface (Itokawa)
 - mass loss and tidal break-up theoretical work
- Tidal disruption of small NEAs during close planetary encounter can produce meteoroid streams.
- Evidence or a chance such a pair of orbits is a chance alone. Decoherence time for such a stream is ~ 50 000 (*Pauls and Gladman, 2005*).
- The frequency of very close approaches (within 2R_{Earth}) by NEAs size like Itokawa (0,5 km) is ~ 1 per 25 000 years (*Ivanov, 2006*).

Příbram and Neuschwanstein orbital evolution

Kornoš, Tóth, Vereš (2008), Earth Moon Planets 102, 59-65

Příbram and Neuschwanstein orbital evolution

Kornoš, Tóth, Vereš (2008), Earth Moon Planets 102, 59-65

Orbital evolution of Příbram clones

Kornoš, Tóth, Vereš (2008), Earth Moon Planets 102, 59-65

Model

2 stages:

 3-body problem: Earth – asteroid – particle on hyperbolic orbit definition of R_limit (particle does not return if dist =100 000 km) asteroid mass: 1 or ½ or 0 (total disruption)

 vectors (r, v) of particles to heliocentric ecliptic coordinates, <u>Adams-Bashforth-Moulton</u> 12th order integrator, Sun, planets, Earth-Moon, DE 406

Disruption results

maximum escape velocity of the particle in the distance of 100 000 km from the Earth after the fly-by

Asteroid mass	1		0.{	5	0	
	velocity	dist.	velocity	dist.	velocity	dist.
	6 cm/s	430 m	6.7 cm/s	550 m	7.3 cm/s	665 m

Roche limit (distance, when particle does not fall back onto surface)

Příbram orbit – 14 700 km (without rotation)

Orbital plain of Příbram stream 1000 years after the disruption

Positions and velocity vectors of released particles after the tidal disruption of Příbram

Distribution of Semimajor axis

Distribution of Eccentricity

е

Distribution of Inclination

Distribution of Ascending Node

.

Distribution of Longitude of perihelion

Target plain of Příbram stream

Particles from Itokawa like asteroid

$$N(>D) = BD^{-2,8}$$

$$M = -\int_{0,01}^{30} 2,8BD^{-3.8}m(D,\rho)dD$$

•
$$\rho = 3250 \text{ kg m}^{-3}$$
, 40% porosity

- number of particles $D \ge 1 \text{ m}$ 9.5 x 10⁵
- number of particles $D \ge 1$ cm 3,8 x 10^{11}

(Saito et al., 2006)

Contribution of asteroid rotation

Contribution of tidal disruption

Stuart, Binzel (2004), Werner et al. (2002), Brown et al. (2002)

Logical consequence

- IF every 43 years the fall of meteorite from the stream (~ 0.6 m)
- global observation
 - parent body ~ 1 km (1 per 50-90 000 y)
 - ~ 1 meteor / hour
- identification of the stream is problematic

Ďakujem za pozornosť
Video - 1959

Video

Orbital evolution of released stream

Distribution of Argument of perihelion

 $N(>D) = BD^{-1.7}; D \subset \langle 200 \text{ m}; 2 \text{ km} \rangle$ $N(>D) = BD^{-2.3}; D \subset \langle 2 \text{ km}; 6.6 \text{ km} \rangle$

Tidal disruption of NEAs – a case of Příbram and Neuschwanstein

Tóth, J., Vereš, P. and Kornoš, L.

Department of Astronomy, Physics of the Earth and Meteorology Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Slovak Republic

Logical consequence

IF every 43 years the fall of meteorite from the stream

- observed by EN :
 - parent body have to be several km in diameter
 - meteor activity is not observed
- global observation
 - parent body < 1 km (1 per 50-90 000 y)</p>
 - < 1 meteor / hour</p>

identification of the stream is problematic

ORS

NOA

SPI

NTA

Dráhový vývoj filamentov

- každý filament \rightarrow 18 testovacích častíc v strednej dráhe
- dráhový vývoj na 5000 r. do minulosti
 - bez negravitačných efektov (fotografické odolnejšie)
- Adams-Bashforth-Moulton, 12. rád, premenný krok
 - prediktor-korektor
- implementované efemeridy JPL DE406
 - o roky -3000 až 3000
 - B planét, Zem Mesiac samostatne

Porubčan, Kornoš: (2006), Contrib. Astron. Observatory Skalnaté Pleso 36, pp 103-117

Typický dráhový vývoj

