Formation of Basic Molecules of the RNA World during Heavy Bombardment Period

Martin Ferus

Alien World: Earth < 3.8 Ga Deep Atmosphere (>10² atm CO₂ + H₂O, 1 atm N₂ + traces of H₂, CH₄, NH₃, CO, He, HCN)

Heavy Clouds (prevented UV irradiation?)

Electric Discharges

Volcanic Activity

Oceans 4.325 Ga (Salty and possibly full of Organics)

Alien World: Earth < 3.8 Ga

Heavy Bombardment

Origin of Biomolecules forming Molecular Life?

What is the First Emergence of Life?

Greenland, Isua, ¹³C deficiency in carbonaceous inclusions in apatite minerals

Maybe it was the RNA World

Molecular Life

Bases of the RNA Code

Searching for a Universal Parent Molecule

Early and Late Heavy Bombardment

Chemical Consequences of an Impact Event

Organics

Chemical Consequences of an Impact Event

Organics

High Power Laser Mimics an Impact Plasma

High Power Laser Mimics an Impact Plasma

Chemical laser (C_3F_7 + Ar), λ = 1315 nm, E = 1 kJ / 0.5 ns

2 ml HCONH₂ + nitrogen, Irradiated by 15 pulses

Gas Phase Analysis

Electric Discharge and Time Resolved Spectroscopy of Formamide Plasma

Step II. Formamide Chemistry

Step II. Formamide Chemistry

Chemical Models of Laser Spark Plasma – Calculations and Experimental Results of Pyrolysis

Formamide Chemistry

Unified Mechanism of Formamide Dissociation

Ferus M , Civis S et al. (2014) *J Phys Chem* 118:719–736.

Step III. Nucleic Bases Detection

Step III. Nucleic Bases Detection

-				Purine	Adenine	Guanine	Uracil	Thymine	Cytosine	Glycine
No. assig.	State	Buffer Gas	Catalyst	N N NH	N N NH			H ³ C NH O	NH2 NH	н₂№Он
L1	Ice	N_2	no cat.							
L2	Liquid	N_2	no cat.	22.11%	0.03%	5.59%	0.78%	0.12%		
L3	Ice	N_2	NiFe	1.13%		6.77%	29.60%			
L4	Liquid	N_2	NiFe	9.54%			1.80%			
L6	Ice	N_2	TiO_2			9.29%				15.81%
L7	Liquid	N_2	TiO_2	0.90%	0.03%	34.15%	1.03%			10.86%
L8	Ice	N_2	Chondrite	0.49%	0.06%	46.81%	1.58%			
L9	Liquid	N_2	Chondrite	0.76%	0.03%	35.23%	1.19%			
L10	Ice	N_2	Clay	3.02%	0.31%	16.08%		0.83%	8.84%	20.99%
L11	Liquid	N_2	Clay	1.58%	100.00%	100.00%	100.00%	15.43%	100.00%	60.96%
DAMN	Ice	N_2	no cat.	100.00%	1.26%	71.51%	0.72%	100.00%	0.08%	100.00%

Ferus M , Civis S, Šponerová J et al. (2015) *PNAS* 112:657–662.

Experiment	Adenine,	Guanine,	Cytosine,	Uracil,	Yield,	
	%	%	%	%	mg/L	
$HCONH_2$	61.9	24.0	0.0	14.1	3.71	
$HCONH_2 +$	54.5	33.0	0.0	12.5	3.51	
$HCONH_2 + clay$	79.4	4.4	13.1	3.1	47.07	
DAMN	7.8	4.5	86.0	1.8	24.74	

Step IV. Nucleic Bases Formation

The results answer several fundamental questions:

1. Destruction of biomolecules during LHE Maybe it was source of energy!

One pot synthesis problem.
One molecule, one system, one catalyst.

3. Emergence of living structures after LHB. LHB was a geological process leading to biomolecules.

4. RNA world is highly probable. The synthesis of basic components is reasonably simple.

G